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Abstract. Two sets with an infinite number o f  new systems of orthogonal polynomials have 
recently been discovered by Smith in connection with some non-linear physical problems, 
e.g. the dispersion of a buoyant contaminant in a fluid. They appear as solutions of 
non-linear differential equations. Let { P , ( x ;  m, k, S)} and (Q,(x; m, k ) } ,  with n = 
0, k, m + k, 2m, 2m + k, . . ., denote a generic system of each set. The positive integers k 
and m are restricted by k < m and S > 1 - k. Although the orthogonality interval of these 
polynomials is real, their zeros are generally complex. Here the sum rules y, = X x;., r = 
1.2,. . ., for the zeros {x ,,,,; i = 1 , 2 , .  . . , n} of the nth-degree polynomials of these sets are 
studied. It is found that all these quantities vanish except for r = pm, p being an arbitrary 
positive integer. Simple recurrent expressions for ypn, are given. 

1. Introduction 

Recently it has been found (Smith 1982a, b) that there exists an infinite number of 
new systems of orthogonal polynomials as solutions of non-linear diff erential equations, 
some of them playing a relevant role in non-linear physics. Smith (1982a) discovered 
a new system of orthogonal polynomials in the study of the dispersion of a buoyant 
contaminant in a fluid and he subsequently showed that there exists an abundance of 
new non-classical systems of orthogonal polynomials associated with non-linear 
problems. Indeed, he found (Smith 1982b) that the ordinary differential equations 

x ~ - ( k - l + m x m ) - + m m n x " - ' Q = O  d2 Q d Q  
dx  dx 

with the positive integers k and m subject to the conditions 

k < m  S > l - k  ( 3 )  

f On leave of absence from Departamento de Fisica Nuclear, Facultad de Ciencias, Universidad de Granada, 
Spain. 
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have orthogonal polynomial solutions, { P , , ( x ;  m, k, a)} and { Q n ( x ;  m, k ) }  respectively, 
with the degrees n restricted to the values 

n = O , k ,  m , m + k , 2 m , 2 m + k  , . . . .  (4) 
For m = 1 and 2, the solutions of the two classes of differential equations are the Jacobi 
and Laguerre polynomials in the first case and the Gegenbauer and Hermite poly- 
nomials in the second. For larger values of m and with the additional condition that 
k and m are mutually prime, each specification (m, k, 6 )  in the set of systems 
{ P , ( x ;  m, k, 6 ) )  and (m, k) in the set of systems { Q n ( x ;  m, k)} defines a new family of 
orthogonal polynomials. The number of new systems of orthogonal polynomials is 
(Smith 1982b) uncountably infinite in the P set, and countably infinite in the Q set. 
This demonstrates that the orthogonal polynomials are not so scarce but, on the 
contrary, are abundant. 

The new systems of polynomials are orthogonal (Smith 1982b) with respect to a 
weight function w ( x )  with support [-1, +1] for the P set and (-CO, +CO) for the Q set. 
There are several aspects which make the study of the spectral properties of these 
polynomials very interesting from both mathematical and physical points of view. 
Each member of both sets is an orthogonal system but it cannot form a complete basis 
in LL, owing essentially to the restrictions (4) of the degree n. Because of this, although 
its interval of orthogonality is real, the zeros of these polynomials belong to the complex 
plane (Szego 1975). 

Recently, Hendriksen and van Rossum ( 1987) gave an electrostatic interpretation 
of the zeros of the systems of the P set corresponding to the specifications (m, 1,2qm) 
with q > 0 and of all systems of the Q set. In doing so, they extended the work of 
Stieltjes (who gave (Szego 1975) an electrostatic interpretation of the zeros of the 
classical polynomials, then confining himself to the case of the real line) in considering 
point charge distributions in the complex plane and they assumed the electrical potential 
to be logarithmic. 

Here we shall study the distribution of zeros of the new polynomials (that is, those 
with m 5 3) by means of the determination of the sum rules for the positive integer 
powers of the zeros {xi ,";  i = 1,2, .  . . , n }  of an nth-degree polynomial of the two sets, 
i.e. by calculating the quantities 

n 

Yr = c x:n r = 0 ,  1,2, 
, = I  

(5) 

One should notice that the y quantities, appropriately normalised, are the moments 
around the origin of the distribution density of zeros p , , ( x ) = Z : = ,  6 ( x - x , , , )  of the 
corresponding nth-degree polynomials. 

The structure of this paper is as follows. The main results are collected in § 2 and 
in 9 3 we briefly review a method recently proposed by us to calculate the y quantities 
of the polynomial solutions of an ordinary differential equation of arbitrary order with 
polynomial coefficients. That method is then applied in 0 4 to prove our main results. 
Finally, some concluding remarks are given. 

2. Main results 

Here, the y quantities defined by ( 5 ) ,  which fully characterise the distribution of the 
zeros of an nth-degree polynomial of the P and Q sets, are given in terms of the 
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parameters (k, m, 6) or (k, m )  which determine the respective differential equations 
( 1 )  or ( 2 )  satisfied by the polynomial. 

The sum rules y,  for the zeros of the polynomial P,(x; m, k, 6 )  are equal to zero 
unless r is a multiple of m. For the latter case, we have found that 

n ( n  - 1) 
2 n + S - m  - 1  Y m  = 

where p = 2,3,4,  . . . . 
For the polynomial Q n ( x ;  m, k), the sum rules y ,  vanish except for r equal to a 

multiple of m. The non-vanishing sum rules have the values given by the following 
recursion relation: 

y m = n m - ' ( n - k )  ( 7 a )  

y,, = (2n  - m - k ) m - ' y ,  ( 7 b )  

( 7 c )  

where p = 2 ,3 ,4 , .  . .. 

3. Method 

In this section we shall briefly describe a method (Case 1980a, b, Dehesa et a1 1985, 
Buendia et a/  1985, 1987) which allows the determination of the sum rules y ,  for the 
zeros of a polynomial of N t h  degree satisfying an ordinary differential equation of 
the form 

where P'$(X)  denotes the ith derivative of the Nth-degree polynomial P N ( x )  and 
g l ( x )  is the polynomial of degree c, defined by 

g i ( x )  = C a:"x'. 
=o 

( 9 )  

Assuming that all the zeros {x# ,  i = 1,2, .  . . , N }  of P N ( x )  are simple, then the new sum 
rules JI" defined by 
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(where E+ means to sum over all 1 subject to none of them being equal) verify the 
relations (Buendia et a1 1987) 

or equivalently, since (Case 1980a) J'," = 0 for OS s s i - 2 ,  
r + ' , - r - l  ( 1  

r = 1 , 2 ,  . . . .  ( 1 2 )  

The 5:'' quantities can be expressed (Buendia and Dehesa 1987) for any r and i in 
terms of the sum rules y,, t S r - 1 + i. These expressions are given explicitly for any r 
and i = 2  (Case 1980a), i = 3 ,  4, 5 (Dehesa et a f  1985, Buendia et a f  1985). Also 
formulae are known for J:?,,, in terms of the y quantities for any i and m = - 1 , O ,  +1 
(Case 1980a), m = 2 , 3  (Buendia et a1 1985). 

( 1 )  i a : : m + l - r J : ? m = -  c aj yr+,-l 
r = 2  m = - l  I = O  

The left-hand side of (1 1) or (12) involves sum rules y ,  with O S  s s r + q where 

q=max{c,- i ;  I i = 2 , 3 , .  . , , h }  (13) 

and the right-hand side has quantities y ,  with r - 1 S s =Z r + c, - 1. Therefore, the basic 
relations (1 1) or (12) allow us to evaluate the sum rule y ,  with s 3 q + 1 recursively in 
terms of yo = N,  y , ,  y 2 ,  . . . , yq. 

To calculate the first q of the y sum rules, we have to use the following alternative 
method (Case 1980b, Buendia et a1 1987). The polynomial P N ( x )  can always be written 
as 

N 

P N ( x )  =constant x 1 (-1)'akXN-' 

normalised so that a. = 1. The a coefficients are 
by (Buendia et a1 1987) 

k = O  

ah =[(-l)h/k!lYh(-yl,  -y27 -2Y3, 

related to the y sum rules of zeros 

(14a) . . , -(n - l ) !  y n ) .  

Here the Yk symbol denotes the well known Bell polynomials of number theory 
(Riordan 1958) so that for the first few k values one has 

On the other hand, one can prove (Buendia et a1 1987) that for s > 1 the a coefficients 
satisfy the recursion relations 

The relations (14) and (15) provide another way of calculating all the y quantities in  
terms of the coefficients U ; ' )  of the differential equation defined by (8) and (9). However, 
due to the high non-linearity of these relations it is clear that this second way is only 
useful for calculating the first few sum rules y r ,  which is what we were looking for. 
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In summary, we have described in this section a method for calculating the 
distribution of zeros of an  Nth-degree polynomial satisfying an  ordinary differential 
equation of arbitrary order, which is defined by (8) and  (9), via the sum rules y, defined 
by ( 5 ) .  This method has two steps: ( i)  the first q sum rules are evaluated by means 
of (14) and (15 )  and (ii) the remaining N - q  sum rules are determined by the basic 
recursion relations ( 1 1 )  or (12). 

For q = 0, let us point out that the first step reduces to letting y o =  N ;  then this 
method reduces to that of Case (1980a) in the case of h = 2 (i.e. for second-order 
differential equations), to that of Dehesa et a1 (1985) for h = 4 and to that of Buendia 
et a1 (1985) for h equal to any integer value. The method has been applied to a variety 
of physically interesting systems of orthogonal polynomials which are solutions o f  (i) 
a second-order differential equation, i.e. the classical orthogonal polynomials (Case 
1980a) including the generalised Bessel polynomials (Galvez and  Dehesa 1984), ( i i )  
a fourth-order differential equation (Dehesa et af  1985) such as the so-called Krall 
classical orthogonal polynomials (Krall 1981 and references therein) and (iii) a sixth- 
order differential equation (Buendia et a1 1985) such as the orthogonal polynomials 
developed by Littlejohn (1982) and Littlejohn and Krall (1983). 

The basic idea of our method for q > 0 is implicitly given by Case (1980b) in dealing 
with the zeros of Lami  polynomials for which q = 1 .  For the general case q 2 0 the 
method has been fully described by us and applied (Buendia ef a1 1987) to the Heine 
polynomials ( q  = 2), the generalised Hermite polynomials ( q  = 2 )  and the new poly- 
nomials of Bessel type recently introduced by Hendriksen (1984) ( q  = 1 ). 

4. Proofs 

Here we will find the values of relations (6a-c) and ( 7 a - c )  for the y sum rules of 
zeros of the polynomials P , ( x ;  m, k, 6 )  and  Q,,(X; m, k ) ,  respectively, starting from the 
differential equations (1) and (2), respectively, which are satisfied by these polynomials. 
The method described in the previous section will be used. 

Let us begin with P , ( x ;  m, k, 6 ) .  The differential equation ( 1 )  satisfied by this 
polynomial is of the form of (8) and (9) with h = 2 and the a coefficients given by 
a'2 '  = 

a ; ' = - ( k - l )  a ; )  = -8  a;" = 0 
a ' O '  ,,-, = n ( n + 6 - 1 )  

1 1  a'*' m + l  = - 1  = 0 for any j#  1 ,  m +  1 
for any j # 0, m (16) 

= 0 for any j f m - 1 .  
The parameter q is equal to m - 1 in this case, according to (13). Therefore, first of 
all we have to evaluate the first (m - 1 )  y quantities by means of (14) and ( 1 5 ) .  From 
the latter equation, we have 

Taking into account the a values given by (16), it is straightforward to see that, while 
the denominator does not vanish, the numerator is always equal to zero for any s 
between 1 and m - 1 .  So a, = 0 for s = 1,2,  . . . , m - 1 .  Then, according to (14) one has 

On the other hand, the basic recursion relation ( 1 1 )  reduces for this case as 
Ys = o  f o r s = 1 , 2  , . . . ,  m - 1 .  (17) 

2(312,'1- J:?m + I ) = ( k - 1 )yr + ay,+ m (18) r = 0 ,1 ,  . . . 
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where the J value is known to have the value (Case 1980a, Dehesa er a1 1985, Buendia 
et al 1985) 

if s=O 

i f s = 1  

if s = 2  

if s 2 3. 

We now substitute values of r into (18) and evaluate using (17) and (19). For r = 0, 
(18) becomes 

m - l  

n ( n - k ) - y ,  - , y,  = ( 2  n + 6 - m - 1 ) y ,  
r = l  

and using (17) again we obtain directly the required equation (6a) .  For r = 1, we 
obtain Y , + ~  = 0 in an analogous way. For r 3 2, (18) and (19) lead to 

In the particular cases r = 2 , 3 , .  . . , m - 1, this expression gives 

y ,  = O  for s = m+2,  m + 3 , .  . . , 2 m  - 1 

since the two summations are zero due to (17). Also, for r = m the same expression 
produces the required equation (6b). In general, for r = p m  + p ‘  with any positive 
integer p and p ’ =  1 , 2 , .  . . , m - 1, (20) leads to 

y ,  = o  with s = ( p +  l ) m +  1 , .  . . , ( p + 2 ) m  - 1 

and for r = pm, with p = 2,3,4, .  . . , (20) reduces to the recursion relation (6c) which 
we were seeking. Therefore, the only non-vanishing sum rules y r  are those with order 
s = m, 2m, 3m,.  . . , whose values are given by relations (6a-c) directly in terms of the 
parameters ( m ,  k, 6 )  characterising the differential equation (1) with the restrictions 
(3) which is satisfied by the polynomial P , ( x ;  m, k, 6)  with n subject to the condition 
(4). 

Let us now consider the polynomial Q,(X; m, k ) .  We know that it satisfies the 
differential equation (2) which can be put into the form of (8) and (9) with h = 2 and 
with the a coefficients given by 

a:” = 1 a;2’ = 0 i f j i . 1  

a t ) =  - ( k  - 1) m -m  a‘” = 0 if j # 0, m a “ ’ =  

i f j # m - 1 .  a ( O J  - 
I - 0  a‘”’  = mn 

m - l  

Here the q parameter defined by (13) is also m - 1. Applying the method of § 3 to the 
Q set leads, in a fully analogous way to the P set, to y ,  = 0 for s = 1,2,  . . . , m - 1 and 
to the basic relation 

2512,’, = ( k  - l)y, + my,,, 
for r = 0, 1 , 2 , .  . . . This relation, together with the J‘,” values given by (19), allows 
one to obtain all the y quantities from the value yo  = n. Operating as in the P set case, 
one can easily prove that all the sum rules vanish except those of order m, 2m, 3m, . . . , 
whose values are indeed given by equations ( 7 a - c ) .  
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5. Concluding remarks 

We have calculated the power sum rules for the zeros of the polynomials which belong 
to two infinite sets of families of orthogonal polynomials which are solutions of known 
non-linear differential equations. The novelty of these polynomials is that, although 
their interval of orthogonality is real, their zeros belong to the complex plane. 

Orthogonal polynomials have been of interest in previous studies of non-linear 
phenomena, e.g. in connection with the use of the Galerkin method. However, such 
uses in the past have usually been associated with linearisation of non-linear problems, 
whereas Smith’s work has shown that they can also be useful in direct studies of 
non-linear phenomena. 

It is interesting to remark that all the sum rules y ,  vanish except those of an order 
r which is a multiple of the parameter m characterising the degree of the polynomial 
coefficients of the differential equation satisfied by the orthogonal polynomial under 
consideration. 
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